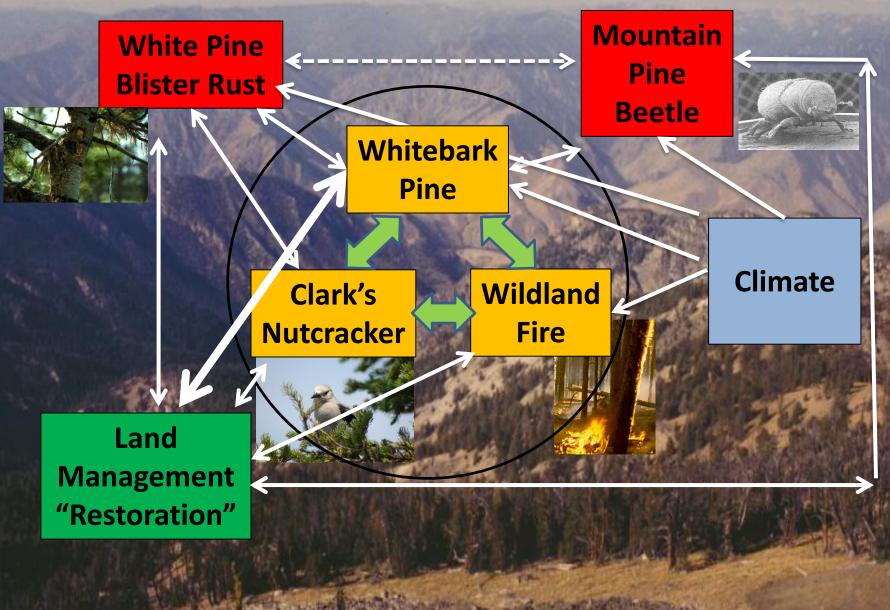

Restoring whitebark forests in the Crown of the Continent under climate change

Bob Keane, USDA Forest Service Rocky Mountain Research Station Fire Sciences Laboratory

Whitebark Pine Decline

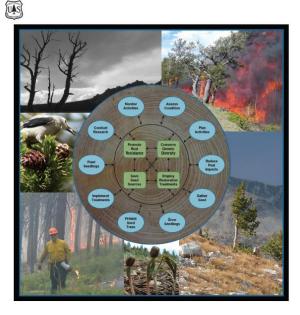


Our ability to address these interactions will dictate rangewide restoration success

Great Burn Roadless Area, Idaho

Whitebark Pine Ecosystem

Whitebark pine rang 1000 restoration strate


A Range-Wide Restoration Strategy for Whitebark Pine (Pinus albicaulis) Report RMRS-GTR-279

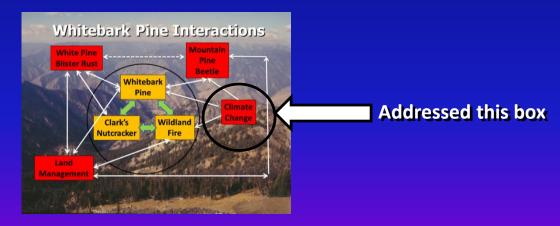
USDA

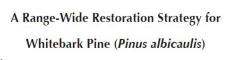
Department of Agricultury Forest Service

Rocky Mountai Research Static General Technica

June 2012

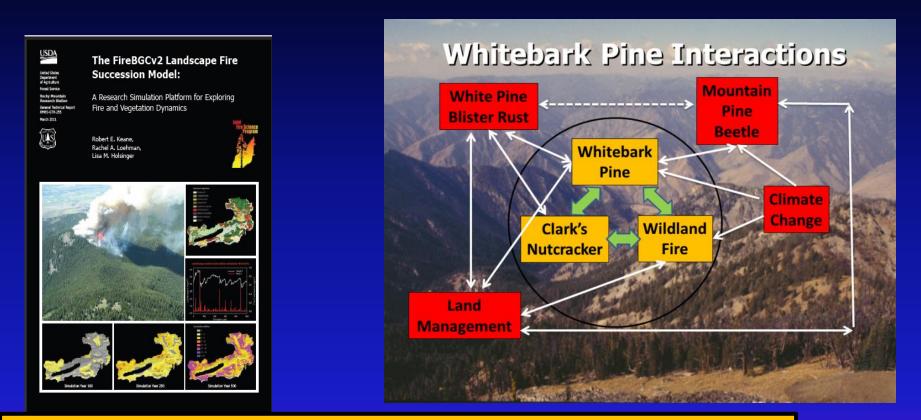
Possible Actions


Whitebark Pine Restoration What about climate change? Why treat whitebark pine when:


 it might decline anyway?
 iuture climates may render costly treatments ineffective?

GNLCC Project: Restoring whitebark pine in the face of climate change

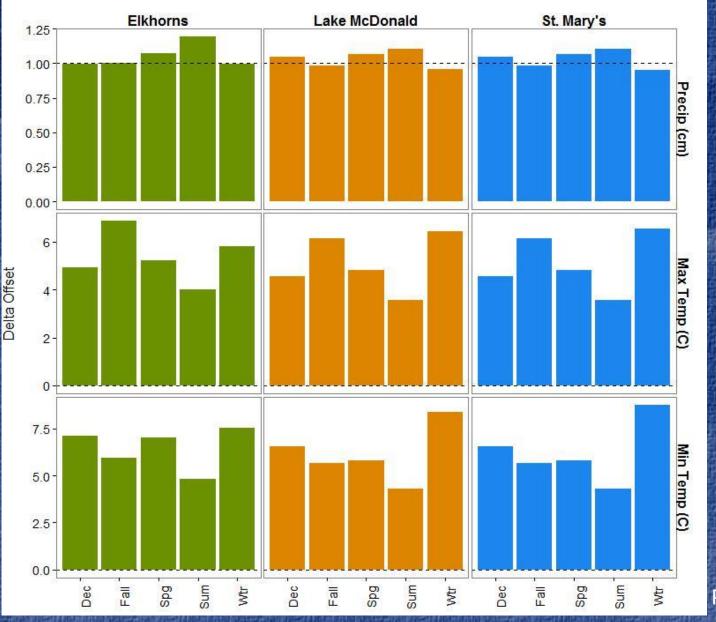
- Develop companion guide to the Rangewide strategy that incorporates climate change
- Used a comprehensive literature search
- Conducted an extensive simulation experiment
- Compiled results and made a whitebark pine restoration climate change adaptation plan


UAS

Keane, Robert E.; Holsinger, Lisa M.; Mahalovich, Mary F.; Tomback, Diana F. 2016[in press]. Restoring whitebark pine ecosystems in the face of climate change. Gen. Tech. Rep. RMRS-GTR-XXX. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station XXX p

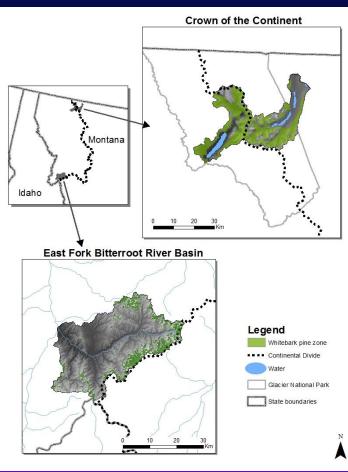
Predicting ecological responses to climate change is an unsatisfying exercise in uncertainty

FireBGCv2: A research simulation platform for exploring fire, vegetation, and climate dynamics


Keane, Robert E.; Loehman, Rachel A.; Holsinger, Lisa M. 2011. The FireBGCv2 – a landscape fire and succession model: a research simulation platform for exploring fire and vegetation dynamics. Gen. Tech. Rep. RMRS-GTR-255. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 137 p.

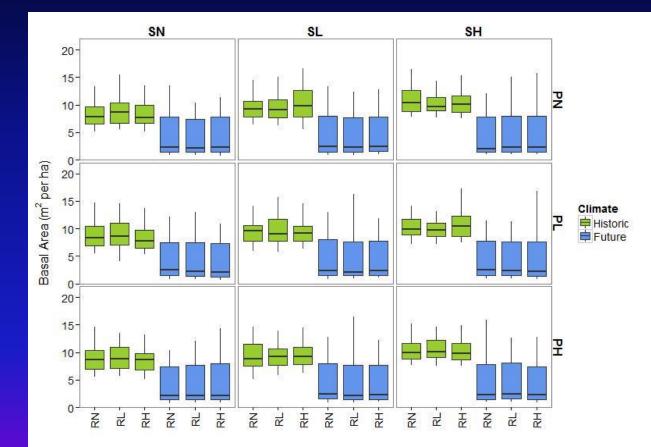
Climate change in the Grown

- 2 Climate Scenarios (Hadley synthesis of 7 GCMs)
 - H-Historical climate (recorded weather)
 - RCP8.5: HOT AND DRY (+5.5°C; 95% ppt)
 Based on IPCC (2011) projections


Extrapolation to fine scales – CMIP5 800 m daily RCP8.5– Whitebark pine zone for three Crown landscapes

CNRM GCM

Peters and others 2013


FireBGCv2 Simulation Experiment Lisa Holsinger simulated levels of four important factors on two landscapes

Climate ? Historical ? RCP8.5-hot, dry – A2 ? Fire management ? No suppression Low suppression (50%) High suppression (92%) **Restoration treatments** ? None Low (10 ha/yr) High (100 ha/yr) Planting ? None ? Low (10 ha/yr) High (100 ha/yr) ?

Simulated 100 years; 10 reps; 2 landscapes=2-3 months simulation

Simulation results Whitebark pine basal area in Crown upper subalpine

Climate

- Historical ?
- Future: hot, dry

Fire management

- N-No suppression L-Low supp (50%) 2
- 2
- ? H-High supp (92%)
 - **Restoration treat**
- **N-None** 2

?

- L-Low (10 ha/yr) 2 2
 - H-High (100 ha/yr)
- Planting ?
- ? ? **N-None**
 - L-Low (10 ha/yr)
- H-High (100 ha/yr) 2

Simulation results Crown upper subalpine landscape composition

Future SH,PH,RH SH,PH,RL SH,PH,RN 1.00 0.75 0.50 -0.25 0.00 SH.PL.RH SH.PL.RL SH.PL.RN 1.00 0.75 0.50 0.25 0.00 SH.PN.RH SH.PN.RL SH.PN.RN 1.00 0.75 0.50 0.25 0.00 SL.PH.RH SL,PH,RL SL,PH,RN 1.00 0.75 0.50 -Landscape Dominant 0.25 0.00 Species SL.PL.RL SL,PL,RH SL,PL,RN ABLA 1.00 PIAL 0.75 PICO 5 0.50 -POTR 0.25 Proportion 0.00 E PSME SL.PN.RH SL.PN.RL SL.PN.RN PIEN 1.00 PIMO 0.75 0.50 -0.25 0.00 SN.PH.RH SN.PH.RL SN.PH.RN 1.00 0.75 0.50 0.25 0.00 SN.PL.RH SN.PL.RL SN.PL.RN 1.00 0.75 0.50 0.25 0.00 SN.PN.RH SN, PN, RL SN, PN, RN 1.00 0.75 0.50 0.00 PICO -POTR PIEN PIMO PICO POTR PIEN PIMO PICO . POTR PIEN PIMO ABLA ш ABLA ш ABLA PIAL ш PIAL PIAL PSM PSM PSM

Climate

- Historical
- Future: hot, dry

Fire management

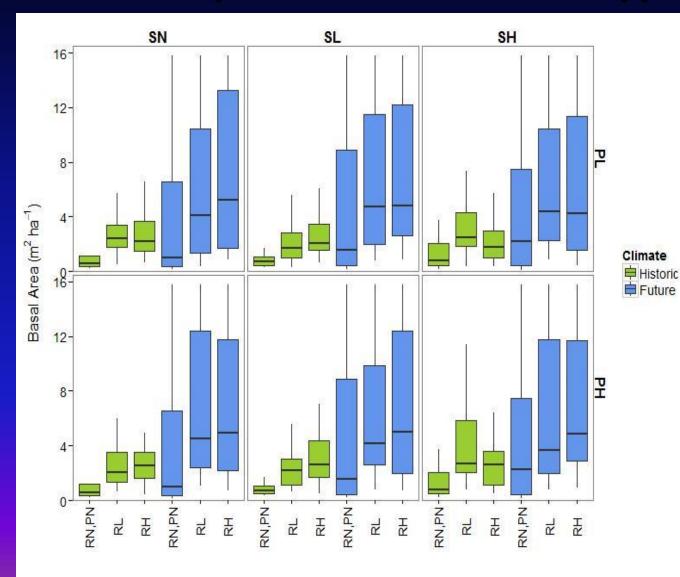
- N-No suppression
- L-Low supp (50%)
- H-High supp (92%)

Restoration treat

- N-None
- L-Low (10 ha/yr)
- H-High (100 ha/yr)

Planting

- N-None
- L-Low (10 ha/yr)
- H-High (100 ha/yr)


B Historical climates

- PIAL gone regardless
- Just a little action helps
- Aspen increases

Future climate

- PIAL does better
- Need restoration
- Makes resilient forests

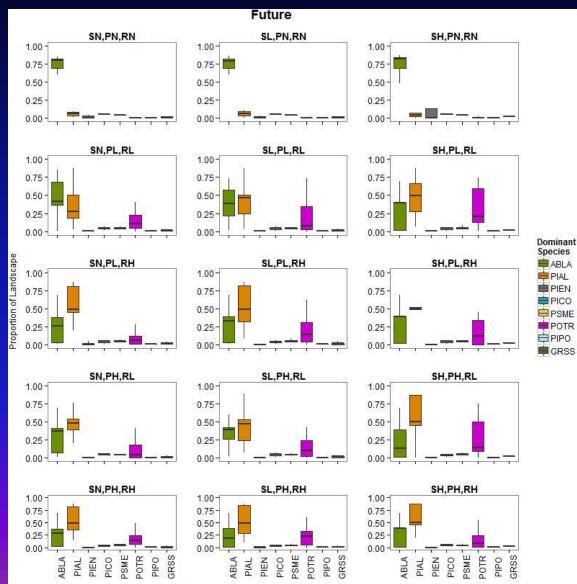
Simulation results Whitebark pine basal area in EFBR upper subalpine

Climate

- **Historical** ?
- ? Future: hot, dry

Fire management

- **N-No suppression** ?
- L-Low supp (50%) 2
- ? H-High supp (92%)


Restoration treat

2 **N-None**

?

- L-Low (10 ha/yr) 2 2
 - H-High (100 ha/yr)
- Planting ?
- ? ? **N-None**
 - L-Low (10 ha/yr)
- H-High (100 ha/yr) 2

Simulation results EFBR upper subalpine landscape composition

Climate

- Historical
- Future: hot, dry

Fire management

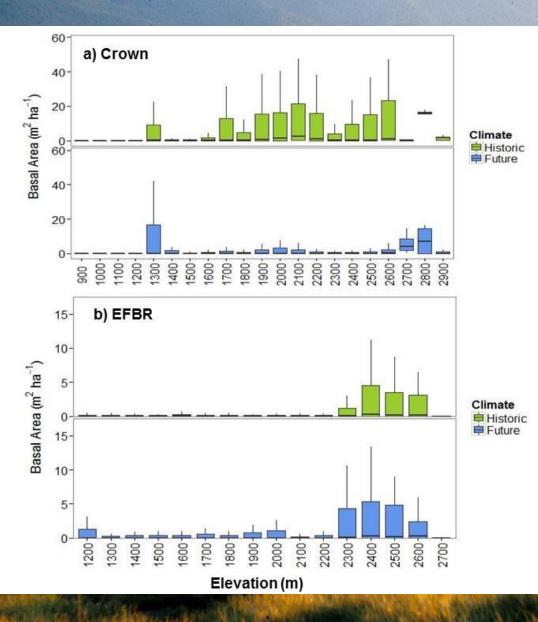
- N-No suppression
- L-Low supp (50%)
- H-High supp (92%)

Restoration treat

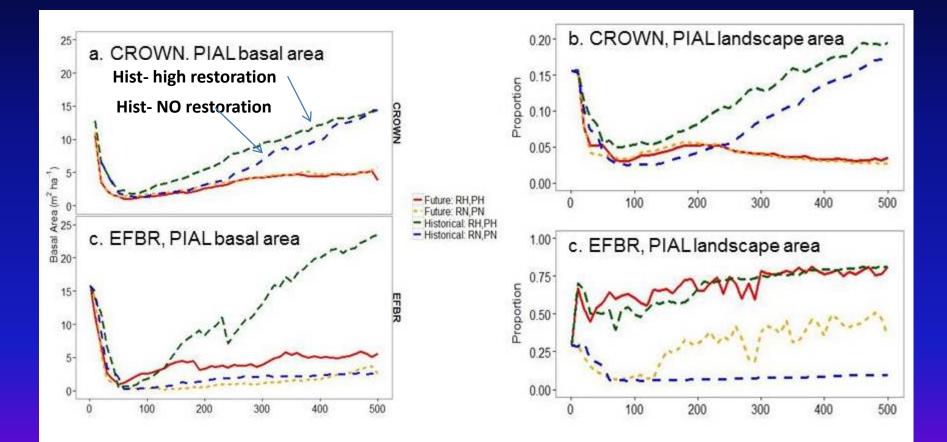
- N-None
- L-Low (10 ha/yr)
- H-High (100 ha/yr)

Planting

- N-None
- L-Low (10 ha/yr)
- H-High (100 ha/yr)

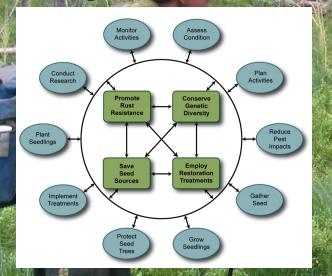

Historical climates

- PIAL gone if no action
- Just a little action helps
- Aspen increases

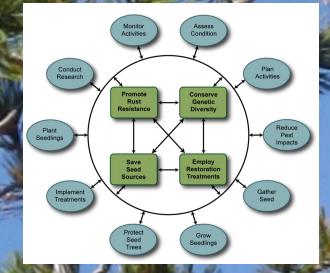

Future climate

- PIAL does better
- Need restoration
- Makes resilient forests.

Influence of Elevation

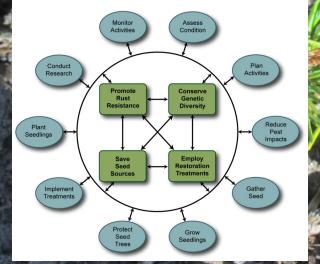

Simulation results Whitebark pine abundance over the long term No fire suppression

Recommendations from Simulation + Literature Review


Reduce Disturbance Impacis

Action

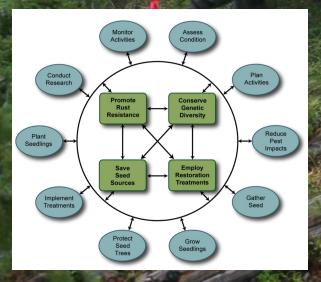
Recommendations: Create heterogeneous landscapes Reduce competition Reduce fuels at multiple scales Avoid single objective treatments


Recommendations from Simulation + Literature Review Action: Gather Seeds Collect from many

Collect from many populations Create seed libraries Shift plus trees **Collect from many** phenotypes

Recommendations from Simulation + Literature Review

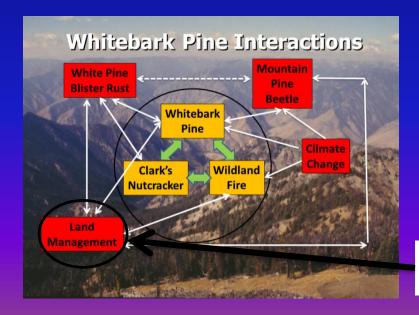
Plant Seedlings



Action:

Recommendations: Plant high elevation sites first **Use microsites** Ensure mycorrhizae Use larger spacings Plant where whitebark present

Recommendations from Simulation + Literature Review


Action: Implement Treatments

Recommendations: Cut more not less **Rx burn under hotter** prescriptions Liberally reduce competition **Reduce fuels to mitigate** future wildfires

Conclusions

- Whitebark pine can exist on future NRM landscapes
- Must enhance rust resistance and perform restoration activities
- Whitebark pine dynamics greatly depends on complex interactions
- Climate projections have too much uncertainty to be useful now
- Climate change impacts manifest differently on different landscapes
- Restoration can save the whitebark pine, even in the face of warming climates
- It will take a long time and high level of agency commitment

Here we can make a difference

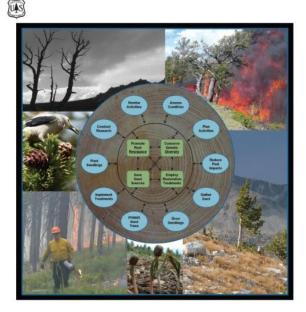
Demonstration of uncertainty Whitebark pine encroachment into a sagebrush grassland

Near Dillon Montana

New study with Emily Guiberson, BLM

References:

Keane, Robert E.; Holsinger, Lisa M.; Mahalovich, Mary F.; Tomback, Diana F. 2016[in press]. Restoring whitebark pine ecosystems in the face of climate change. Gen. Tech. Rep. RMRS-GTR-XXX. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station XXX p


Keane, Robert E.; Holsinger, Lisa M.; Mahalovich, Mary F.; Tomback, Diana F. 2016. Evaluating future success of whitebark pine ecosystem restoration under climate change using simulation modeling. Restoration Ecology http://onlinelibrary.wiley.com/doi/10.1111/rec.12419/suppi nfo

USD/

A Range-Wide Restoration Strategy for

Whitebark Pine (Pinus albicaulis)

