

INFORMING IMPLEMENTATION OF THE GREATER YELLOWSTONE COORDINATING COMMITTEE'S WHITEBARK PINE STRATEGY BASED ON CLIMATE SCIENCES

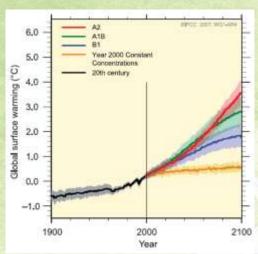
Andrew Hansen, Cathy Whitlock, Elizabeth Shanahan,
Nate Piekielek, Virginia Iglesias
Montana State University

Helen Naughton
University of Montana

Tom Olliff

NPS IMR and Great Northern LCC

Challenges of Whitebark Pine Restoration Meeting
Bozeman, MT
Sept 20, 2013



MANAGING NATURAL RESOURCES UNDER CLIMATE CHANGE

Challenges

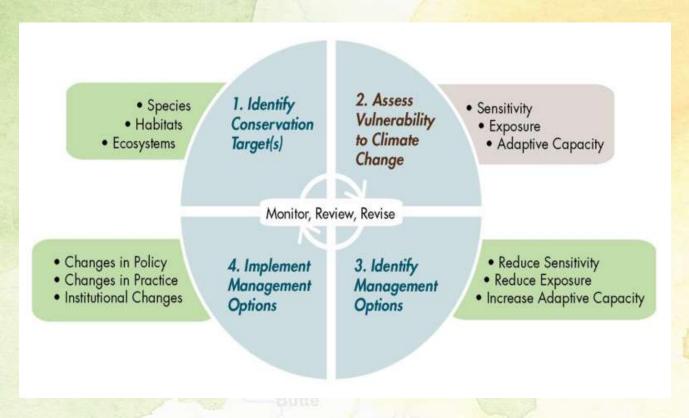
- Time horizon (decades to centuries) longer than planning and management horizons (1-5 yrs)
- Relevant spatial area (subcontinental) larger than management units
- High uncertainties on science (climate change, ecological response) and management effectiveness
- Requires coordination among multiple management units and jurisdictions
- Approach and methods are underdeveloped

MANAGING NATURAL RESOURCES UNDER CLIMATE CHANGE

Consequently

North Central Climate Science Center – "the strongest need at this point is to demonstrate how climate science can be integrated into resource management decision---making".

NASA Applied Sciences - "We need to make progress connecting climate drivers to biological responses in order to improve our basic understanding of climate change impacts and to develop tools for managing species and ecosystems under climate change."



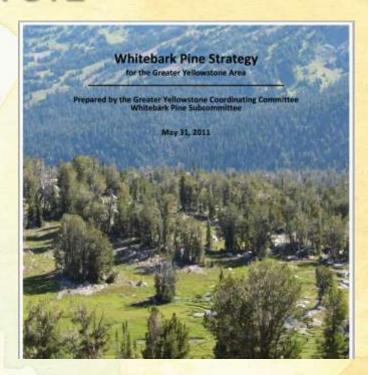
MANAGING NATURAL RESOURCES UNDER CLIMATE CHANGE

Approach

Glick et al. 2011. Scanning the Conservation Horizon: A guide to climate change vulnerability assessment. National Wildlife Federation, Washington, D.C.

WHITEBARK PINE IN GYE

Overview


- Keystone species
- Early climate responder
- Listed as candidate species

GYCC WBP Strategy

- Interagency committee has worked since 1999 to develop a GYA-wide management strategy to protect and restore WBP under the threat of mountain pine beetles and blister rust.
- Little information on climate change available to committee.

Key Question

 What locations in GYE will have climates suitable for WBP and are candidates for restoration strategies under the GYCC WBP Strategy?

Helena

UNIVERSITY CONSORTIUM

FCOSYSTEMS

WHITEBARK PINE IN GYE

Objectives

- Ecological forecasting under alternative IPCC climate and land use scenarios.
- 2. Analyzing WBP response to climate and extreme climate events over the past 15,000 years.
- 3. Develop spatially explicit WBP management alternatives.
- 4. Evaluate the management alternatives under future climate scenarios:
 - WBP goals
 - Ecosystem services derived from WBP
 - Cost of implementation.
- Draw recommendations for implementation of the GYCC WBP strategy under climate change.

AGENCY COLLABORATORS

- Greater Yellowstone Coordinating Committee Whitebark
 Pine Subcommittee, Karl Buermeyer and Virginia Kelly
- NPS I&M Greater Yellowstone Network, Kristen Legg
- NPS I&M Rocky Mountain Network, Mike Britten
- Grand Teton National Park, Kelly McClosky
- Yellowstone National Park, Dan Reinhart
- Rocky Mountain National Park, Ben Bobowski

SCIENCE COLLABORATORS

Hansen Lab

Nate Piekielek, Linda Phillips, Tony Chang, Regan Nelson, Erica **Garroute**, Katie Ireland

Whitlock Lab & IoE

Todd Kipfer, Virginia Ignalis Liz Shanahan

UM

Running Lab

Jared Oyler, Ashley Ballantyne, Kelsey Jencso, Michael Sweet

Helen Naughton

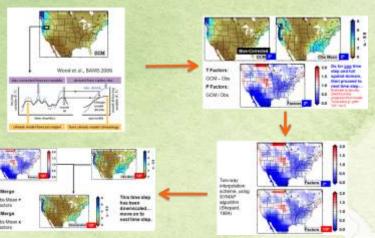
Hansen Lab, MSU Tom Olliff, NPS / Great Northern LCC John Gross, Bill Monihan, NPS I&M **Dave Theobald, Conservation Science Partners Forest Melton, NASA Ames** Scott Goetz, Woods Hole Research Center

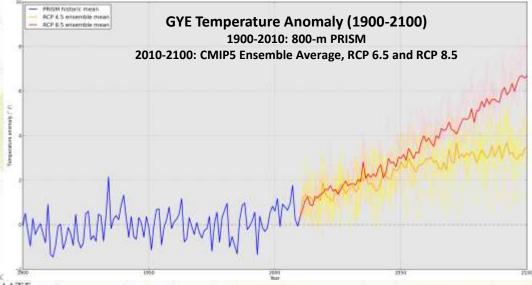
Jeff Morresette, Dennis Ojima, NCCSC Hansen Lab, Whitlock Lab MSU Running Lab, UM Barry Noon, Susan Skagan, Colorado State University and USGS Bill Lauenroth Lab, University of Wyoming Diane Debinski Lab, Iowa State University


MONTANA INSTITUTE

LCC-VP

LANDSCAPE CLIMATE CHANGE VULNERABILITY PROJECT



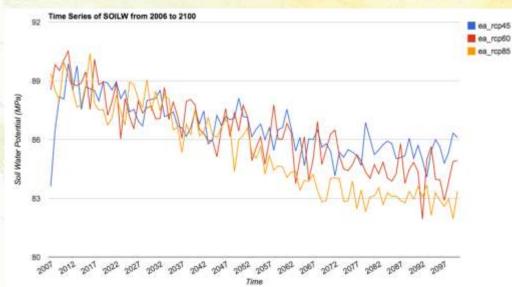

Downscaling Projected Climate

Bias-Correction Spatial Disaggregation
Thatcher et al. 2013. EOS.

1900-2010 2030 2060 2090

Mean Temp 1.1 °F 1.7 – 2.0 °F 3.0-4.0 °F 3.0 – 6.0 °F

Ecosystem Processes

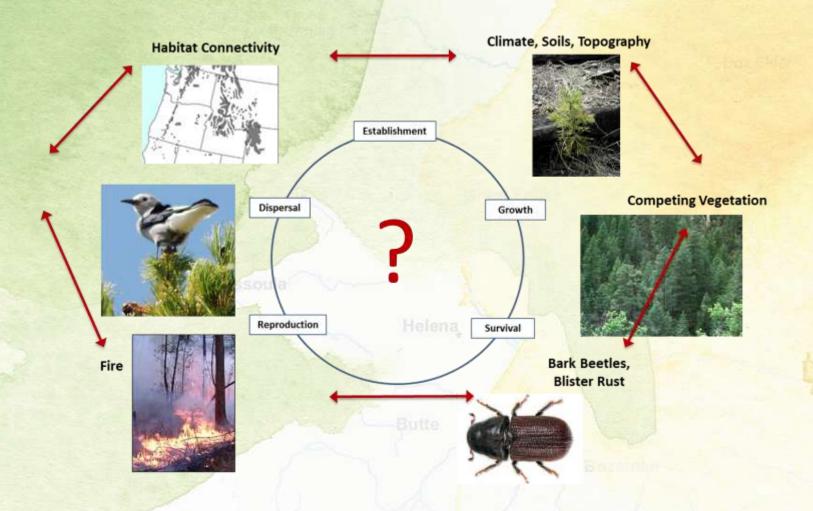


TOPS Outputs

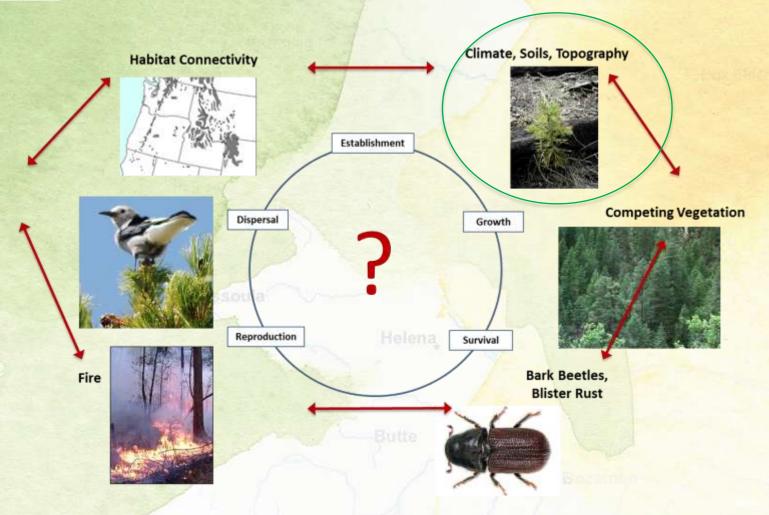
Hydrology
Evapotranspiration
Snow water equivalent
Soil moisture
Runoff

Vegetation
Water Stress factor
Gross primary productivity
Net primary productivity
Respiration

Yellowstone, Soil Water, Ensemble Average, Summer



Whitebark Pine Distribution Modeling



Whitebark Pine Distribution Modeling

Whitebark Pine Distribution Modeling

Calibration

Periods: 1950-1980; 1980-2010

Climate Data: PRISM (800m, monthly)


Daley et al. 2010

Projection

Period: 2040, 2070, 2100

Climate Data: IPCC CMIP5 Downscaled (800m, monthly)

Thatcher et al. 2013

CCSM-1

Ensemble average

Concentration Scenarios

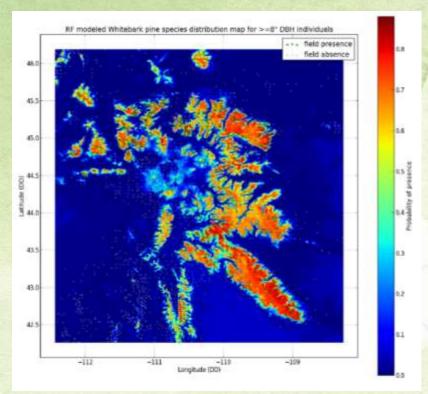
RCP 4.5

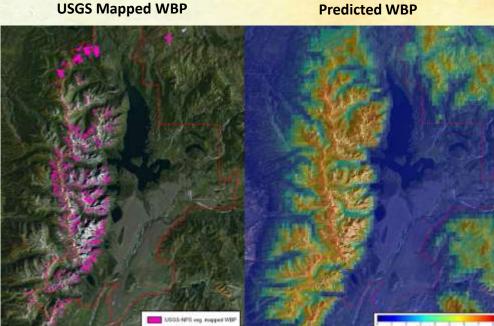
RCP 8.5

Statistical Techniques

Multivariate adaptive regression splines, Random Forests, Boosted Random Forests, General Linear Models

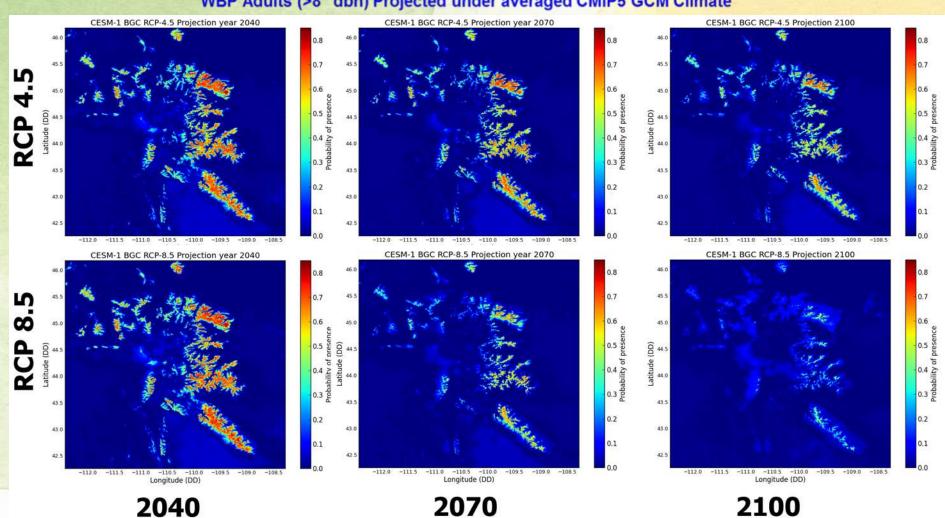
Study Area: GYE





Whitebark Pine Distribution Modeling

Leading predictors: Tmax8, VPD8, PET7, SWE5, Tmin1



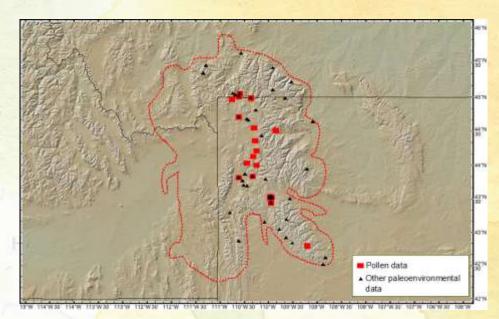
Whitebark Pine Distribution Modeling

WBP Adults (>8" dbh) Projected under averaged CMIP5 GCM Climate

Whitebark Pine Distribution Modeling

Geographic Properties of Areas of Suitable Climate (RCP 8.5)

Prob. Presence > 50%	Current	2040	2070	2100
Area	28,732 km²	10,227 km ² (65% reduction)	6,160 km² (79% reduction)	3,949 km ² (86% reduction)
Mean elevation	2,974 m (9,754 ft)	3,214 m (10,541 ft)	3,288 m (10,784 ft)	3,363 m (11,030 ft)
Elevation Range	2,226 – 4,101 m (7,301 – 11,030 ft)	2,478-4101 m (8,127 – 11,030 ft)	2,545-4,101 m (8,347 – 11,030 ft)	2,643-4,101 m (8,669 – 11,030 ft)


LONG-TERM CONTEXT

Has WBP persisted through unsuitable climate periods in the past?

Goal: Understand WBP response to post-glacial (15 kyr) climate changes in GYE

Tasks:

- Interpret fluctuations in WBP abundance in light of past climatic and environmental changes: Medieval Climate Anomaly (800-1200 AD) Little Ice Age (1500-1900 AD)
- Explore response of WBP during past periods of high and low fire activity
- Compare WBP growth rates in recent centuries with independent climate data

Tree-ring and pollen records in the GYE

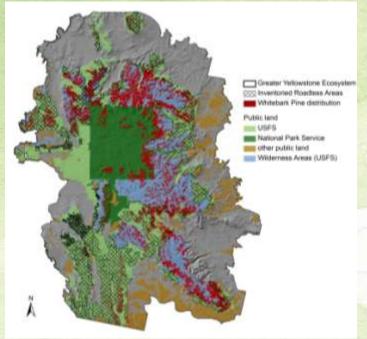
DEVELOP AND SIMULATE MANAGEMENT ALTERNATIVES

Approach

Simulate potential outcomes of alternative management options:

- Evaluate current WBP Strategy against forecasts.
- Create two additional options that require new agency tolerances.

Climate	WBP Management Options									
Scenarios	No Action	Low (GYCC 3-yr plan)	Medium	High						
RCP 4.5										
RCP 6.0										
RCP 8.5										



DEVELOP AND SIMULATE MANAGEMENT ALTERNATIVES

Context

Challenge: Agencies / land allocation types differ in tolerance to management.

Greater Yellowston	ne Ecosystem			
Agency/Allocation	Legal Direction/Mgt WBP Restoration Tools allowed o Philosophy likely		% WBP	
National Forests	Multiple useEcological integrity	 All Planting seedlings/sowing seeds Pruning Wildland and prescribed fire use Targeted fire suppression Mechanical thinning Research/Monitoring 	5%	
NF – Wilderness Area	Most actions prohibited or discouraged	Wildland fire useResearch/Monitoring	54%	
NF – Inventoried Roadless Areas Hel	Actions less restricted but remoteness an issue	 Planting seedlings/sowing seeds Wildland fire use Research/Monitoring Mechanical thinning (but requires USDA Secretarial approval) 	27%	
Yellowstone National Park	Park Service Policy: "Take no action that would diminish the wilderness eligibility of an area" AND/BUT	Wildland fire useResearch/Monitoring	10%	
Grand Teton National Park	"Management actionsshould be attempted only when knowledge and tools exist to accomplish clearly articulated goals."	 Planting seedlings/sowing seeds Pruning Wildland fire use Research/Monitoring 	3%	

EVALUATE MANAGEMENT ALTERNATIVES

WBP Goals, Cost of Implementation, Ecosystem Services

Ecosystem Service Valuation

Whitebark pine ecosystem services valued:

- Hydrologic regulation
- Provisioning for other species
- •Wilderness aesthetics and recreation

Valuation methods:

- •Conjoint survey analysis to estimate total value (both use and non-use values including non-consumptive ecosystem services)
- •Market-based analysis for marketable ecosystem services (e.g., water replacement)

Ecosystem values used for cost-benefit analysis

- •Costs of each management alternative will be compared with the benefit / value of the ecosystem services resulting from the alternative
- •The management alternative with the largest net benefit (benefits costs) would be recommended for adoption

RECOMMENDATIONS FOR IMPLEMENTATION

Workshop with GYCC WBP Subcommittee and managers from WBP range to interpret results and make recommendations

TIME TABLE

Schedule	Year 1		Year 2			Year 3						
	300					1						
Task	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q
Study Design	= 7		3	100								
Pre-implementation Workshop			8									
Objective 1												
Ecological forecasting												
Objective 2												
Paleo analyses												
Objective 3:									TIII,			
Management alternatives workshop												
Objective 4: Evaluate alternatives				33,					18		- 1	4
Analyze mgt alternatives on WBP											78	20/
status												
Conduct benefits surveys												8
Analyze cost/benefits of		10.0	al am	1								
alternatives		10	elen	4	All Control							
Objective 5				_	_ 7							
Workshop to define					1		163					1020
recommendations				Sec. 1			1					
Data Transfer and Archive	1	Ri	itto	- 7								
Targeted meetings to share results an	d scie	nce p	roduc	cts					1500			
GNLCC Science Webinar	-						, p		-1			
Finalize all data products			1		J)					
Archive all materials												

Acknowledgements

North Central Climate Sciences Center

NASA Applied Sciences Program (Grant 10-BIOCLIM10-0034)

NASA Land Cover Land Use Change Program

NSF EPSCoR Track-I EPS-1101342 (INSTEP 3)

