Influence of <u>site conditions</u>, <u>shelter objects</u> and <u>ectomycorrhizal</u> <u>inoculation</u> on the early survival of whitebark pine seedlings planted in Waterton Lakes National Park

Erin Lonergan & Cathy Cripps, Montana State University Cyndi Smith, Conservation Biologist, Waterton Lakes National Park

"Working Together to Restore Terrestrial Ecosystems" --Waterton Lakes National Park"

Parks Canada investing \$7 million to restore terrestrial ecosystems.

In Waterton Lakes National Park, the restoration of native fescue grasslands and of whitebark and limber pine communities are the main focus of this many-sided project.

> Perrodicul da Canada des Larra-

Volunteers planting whitebark pine in Waterton Lakes National Park © Parks Canada / Sean Lemoine

Cyndi Smith, Conservation Biologist WLNP

Initiated restoration of whitebark & limber pine in Waterton Lakes National Park

- High WBP mortality (Smith et al. 2008, Smith et al. 2011)
- Restoration began in 2003
- Plus trees identified 2006, cone collection 2006-2011
- Use of Verbenone to protect selected trees
- Seeds sent for <u>rust resistance screening</u>
- Planting whitebark pine seedlings (2010, 2011, 2012, 2013)
- Inoculated of seedlings with native ectomycorrhizal fungi

Erin Lonergan, M.Sc. Research 2012

"Use of Native Ectomycorrhizal Fungi in the Restoration of Whitebark Pine"

Plant Sciences & Plant Pathology Dept., Montana State University

- experimental design, planting, inoculation
- monitoring seedlings
- statistical analysis

Our Goal:

was to determine how various factors affect the survival of nursery-grown whitebark pine seedlings planted in the park.

- Planting in burned areas (terra-torched)
- Planting in beargrass
- Planting with microsites (shelter objects)
- Inoculation with ectomycorrhizal fungi

Waterton Lakes National Park

Summit Lake

Elevations: 1,500 – 2,000 m

To remove overstory trees, not WBP

Burned, beargrass roots still present

Burned, no beargrass present

How do Ectomycorrhizal Fungi benefit plants?

Cripps, CL 2002. Mycorrhiza. In: Pscheidt & Ocamb, Pacfic NW Plant Disease Management Handbook

Method for inoculation with Native Ectomycorrhizal Fungi

Native Suilloid fungi are collected from whitebark pine forests

Spore slurries are made from mushrooms

Fertilization stopped & spores injected onto the soil- 1 to 3 months before planting

Seedlings colonized with ectomycorrrhizal fungi

Cripps & Grimme 2011: Hi-five proceedings

Seedlings were out-planted in clusters

Three ectomycorrhizal treatments

Inoculated – seedlings inoculated with **native** ectomycorrhizal fungus in the greenhouse

Exposed - seedlings not inoculated but adjacent to inoculated seedlings in a cluster

Not inoculated - seedlings were not inoculated or not exposed

Inoculated seedlings were tagged

adjacent <u>exposed</u> seedlings

Monitoring seedling survival

1000 nursery grown seedlings planted in 2010

Treatment	Unburned No Beargrass	Unburned Beargrass	Burned No Beargrass	Burned Beargrass
Un-inoculated	27 seedlings	54 seedlings	87 seedlings	92 seedlings
Exposed	16 seedlings	47 seedlings	99 seedlings	85 seedlings
Inoculated	41 seedlings	70 seedlings	174 seedlings	191 seedlings

Above normal precipitation in monitoring years one (2011) and two (2012)

Early results – 2 years

Variables

- With/without beargrass
- Unburned/burned
- With/without microsite
- With/without mycorrhizal inoculation

Results of **binary logistic regression** of site conditions, shelter object presence, and ectomycorrhizal inoculation treatment on the survival of out-planted whitebark pine seedlings.

Model Terms
Estimate
SE
Wald z² df
Prob.
Exp(B)

BINARY REGRESSION MODEL

logit(odds of survival) = $\beta 0 + \beta 1 b + \beta 2 bg + \beta 3 so$

- + β 4 exposed + β 5 inoculated + β 6 b*bg + β 7 b*so
- + β 8 bg*so + β 9 b*exposed + β 10 bg*exposed +

 β 11 b*inoculated + β 12 bg*inoculated

Exp(B) = odds of survival in comparison to outgroup

Lonergan, Cripps, Smith (accepted) Forest Science

Model Terms	Estimate	SE	Wald z ²	df	Prob.	Exp(β) ³		
	(β) ¹					147		
Outgroup: Unburned without beargrass, Uninoculated, No shelter object								
Intercept	-1.109	0.387		1	0.004	0.330		
Burn	2.083	0.434	4.803	1	< 0.001	8.029		
Beargrass	0.877	0.404	2.168	1	0.030	2.404		
Exposed	0.497	0.468	1.062	1	0.288	1.644		
Inoculated	-0.042	0.399	-0.105	1	0.917	0.959		
Shelter object	1.151	0.359	3.211	1	0.001	3.161		
Outgroup: Unburned with beargrass, Uninoculated, No shelter object								
Intercept	-0.233	0.286	-0.814	1	0.415	0.792		
Burn	0.572	0.347	1.648	1	0.099	1.773		
No Beargrass	-0.877	0.404	-2.168	1	0.030	0.416		
Exposed	0.798	0.377	2.114	1	0.035	2.220		
Inoculated	0.604	0.331	1.824	1	0.068	1.829		
Shelter object	0.551	0.290	1.902	1	0.057	1.735		
Outgroup: Burned without beargrass, Uninoculated, No shelter object								
Intercept	0.974	0.384	2.536	1	0.011	2.647		
unburned	-2.083	0.434	-4.803	1	> 0.001	0.125		
Beargrass	-0.634	0.420	-1.510	1	0.131	0.530		
Exposed	-0.583	0.363	-1.608	1	0.108	0.558		
Inoculated	-0.359	0.332	-1.082	1	0.279	0.698		
Shelter object	1.030	0.328	3.141	1	0.002	2.801		
Outgroup: Burned with beargrass, Uninoculated, No shelter object								
Intercept	0.340	0.237	1.435	1	0.151	1.404		
Unburned	-0.572	0.347	-1.648	1	0.099	0.564		
No Beargrass	0.634	0.420	1.510	1	0.131	1.885		
Exposed	-0.283	0.293	-0.964	1	0.335	0.754		
Inoculated	0.286	0.253	1.131	1	0.258	1.331		
Shelter object	0.429	0.215	1.996	1	0.046	1.536		
Interactions								
Burn x Beargrasss	-1.511	0.357	-4.229	1	< 0.001	0.221		
Burn x Exposed	-1.080	0.435	-2.483	1	0.013	0.340		
Burn x Inoculated	-0.318	0.377	-0.843	1	0.399	0.728		
Burn x Shelter object	-0.121	0.331	-0.366	1	0.714	0.886		
Beargrass x Exposed	0.301	0.426	0.706	1	0.480	1.351		
Beargrass x Inoculated	0.645	0.377	1.711	1	0.087	1.906		
Beargrass x Shelter object	-0.601	0.353	-1.702	1	0.089	0.548		
¹ Coeffecient								
² Wald chi-square value = (Wald Z value) ²								
³ Odds ratio of survival for the predictors								
ouus ratio oi sui vivai ior the predictors								

Conclusions from <u>early</u> monitoring after 2 years

• This study had some of the <u>highest early survival rates</u> of any reports (overall 95% in year 1 and 69% year 2)

What role did exceptional <u>moisture conditions</u> have on early survival? What role did treatments have on early surivival?

• <u>Burned (terra-torched) areas without beargrass</u> roots supported some of the highest seedling survival rates (82%)

 Planting near <u>shelter objects (microsite)</u> increased survival 10-12.5% on burns and 31% on unburned areas without beargrass (poor planting sites)

 Inoculation with native ectomycorrhizal fungi (or exposure to inoculated seedlings) increased survival 17-24% on unburned sites with beargrass

• Long-term monitoring necessary to assess the ultimate effectiveness of the restoration techniques tested.

Izlar 2007: 100,000 seedlings year 1 = 74% year 2 3-15l = 38%

PLANT

Ongoing Efforts

Out-plantings of seedlings inoculated with native ectomycorrhizal fungi

- 500 Whitebark- Glacier 2009
- 1000 Whitebark– Waterton 2010
- 1000– Whitebark Waterton 2011
- 1000– Limber Pine Waterton 2012
- 1000—Whitebark– Waterton 2012
- 1000—Whitebark—Waterton 2013

Can it help increase the survival of expensive WBP seedlings? Need carefully planned studies for inoculation:

A Range-Wide Restoration Strategy ior Whitebark Pine (Pinus albicaulis) -usual seedling production to 1.5 yrs -stop fertilization 1-2 months -inoculate 2-3 months before planting -monitor, monitor, monitor

We thank

Parks Canada for funding this research and the Whitebark Pine Ecosystem Foundation for additional resources, Joyce Lapp, Tara Carolin, and the Glacier Park Revegetation Crew and the volunteers.

And our field assistants

- Ed Barge
- Rosemary Keating
 - John Mason
- Don Bachman

Regeneration of whitebark pine is tedious business...thanks to all who have dedicated themselves to saving this important tree species

Erin Longergan is currently searching for employment in the USDA Forest Service, Parks Service, in restoration, or private industry

Particularly in the PNW area (OR, WA)

elonergan3@gmail.com

