

Andrew Befus University of Calgary

Introduction: Raison d'être

1. Build a model

• Ideally, a model would compliment known controls on whitebark and limber pine distribution

Introduction: 2 Main Things

1. Model → Map software

2. Equipment & methods for alpine vegetation surveys using UAV

Introduction: Study Area

Model Building: Ground Truth

1. ACIMS Archive

2. Field Campaigns

3. Aerial Photo Interpretation

Ground Truth: ACIMS Archive

Element Occurrence Record

2010-05-06 Page #: 78

Pinus albicaulis

SRank: S2

Are Occurrences Tracked?: Y

Global Rank: G4

Alberta Wildlife Act Designation:

AlbertaGeneral Status: May Be At Risk

whitebark pine

Element Code: PGPIN04010

Occurrence Code #: 022

Eo id: 18020

Type: Sub

Data Entry Quality Checked? : N

Precision Code: S

Identification OK?:

Actual Mapping Precision (m): 15

Data Sensitive?: N

Survey Date: 2003-07-15

Last Observed: 2003-07-15

First Observed: 2003-07-15

Occurrence Type:

Related Occurrence (EO)	Master (M) or Sub (S)
251	М

Note:

A Sub EO will show only the related Master EO in this list.

A Master EO will list all Sub EOs related to it. A Master EO is always related to itself).

Location (Coordinates shown are "centroid" of occurrence polygon(s))

UTM Grid Zone: 11 UTM Easting NAD83 (m): 494315

UTM Northing NAD83 (m): 5780683

10TM Easting NAD83 (m): 357619

10TM Northing NAD83 (m): 5780411

Latitude: 52°10'35.74"

Longitude: -117'4'59.31"

Directions: Banff National Park; Backside of Parker Ridge

General Description: Open Pinu alb and closed Pinu alb - Abie las

Minimum Elevation:

2153 m

Slope: 50.00

Size of Occurrence: 0.00

Maximum Elevation:

2164 m

Aspect:

Occurrence Data

Ground Truth: ACIMS Archive

Single Point or Area Plot assumed to be in center of stand

Point is at location of a tree (within 15m)

Point has been verified (or moved) to lie within a homogeneous stand between two or more verified points

Point is halfway between two close proximity points on a two-point transect

Point is halfway between two close proximity points on a multiple-point transect

Point is average of a cluster of points on a multiple-point plo

Point placed on a transect between 30-100m from endpoint - based on RGB imagery

flay need work: Point is halfway between two distant proximity points on a two-point transect

Point may not represent a stand - only one or two trees spotted or not representative

Bad point - reasoning specified in plot notes

TYPE	CREW	DATE_	StartX	StartY	StopX	StopY	Tdistance	TX	TY	UTMX	UTMY	N83Z11X	N83Z11Y	PDOP	ELEV	SLOPE	ASPECT
Transect	Ainsley/Benner	02/08/2005	710132	5477734	710041	5477779	102	710087	5477757	709980	5477809	710087	5477757	25	1432	27	204
Transect	Gould/Allen/Meijer	13/06/2007	679859	5671772			0	679859	5671772	679822	5671904	679859	5671772	25			
Transect	Gould/Allen/Meljer	13/06/2007	679802	5672040			0	679787	5672055	679822	5671904	679787	5672055	25			
Point Plot	Blake	01/08/2009						309892	5986180	310195	5986309	309892	5986180	25			
Point Plot	Blake	01/08/2009						310285	5986256	310195	5986309	310285	5986256				
Point Plot	Blake	01/08/2009	310368	5986604	310319	5986619		310343	5986611	310195	5986309	310343	5986611				
Transect	1.Smith	03/07/2003	563961	5679850	563932	5679848	29	563947	5679849	563902	5679847	563947	5679849	15	2048	62	200
Transect	1.Smith	04/07/2003	596962	5672204	596948	5672195	35	596965	5672200	596972	5672223	596965	5672200		2117	50	190
Transect	1.Smith	04/07/2003	596951	5672263	597015	5672205	86	596983	5672234	596972	5672223	596963	5672234		2113	70	30
Transect	1.Smith	07/07/2003	599317	5667089	599275	5667058	52	599296	5667074	599272	5667135	599296	5667074		2205		230
Transect	1.Smith	07/07/2003	599262	5667155	599239	5667218		599251	5667187	599272	5667135	599251	5667187		2232	40	260
Transect	1.Smith	15/07/2003	494332	5780693	494302	5780703	32	494317	5780698	494315	5780683	494317	5780698		2164	50	190
Transect	1.Smith	15/07/2003	494329	5780680	494310	5780658	29	494320	5780669	494315	5780683	494320	5780669		2153	55	240
Transect	1.Smith	16/07/2003	534006	5764971	533987	5765018		533997	5764995	533994	5764998	533997	5764995		2217		240
Transect	1.Smith	22/07/2003	561026	5720351	561087	5720358		561057	5720355	561057	5720355	561057	5720355		2265	65	190
Transect	1.Smith	23/07/2003	562023	5719912	562042	5719887		562033	5719900	562047	5719907	562033	5719900		2145	45	240
Transect	1.Smith	23/07/2003	562071	5719906	562053	5719925	26	562062	5719916	562047	5719907	562062	5719916		2175	65	230
Transect	Leslie/I.Smith	14/06/2004	676376	5562826	676452	5562857	82	676414	5562842	676417	5562894	676414	5562842		2160	60	170
Transect	Leslie/I.Smith	14/06/2004	676393	5562936	676446	5562975	66	676420	5562956	676417	5562894	676420	5562956		2232	65	150
Transect	Leslie/I.Smith	15/06/2004	673575	5564351	673566	5564331	22	673571	5564341	673571	5564341	673571	5564341		2200	30	220
Transect	Leslie/I.Smith	15/06/2004	673527	5565295	673525	5565262	33	673526	5565279	673526	5565279	673526	5565279		2324	35	240
Transect	Leslie/I.Smith	05/07/2004	616205	5645047	616205	5645106	59	616205	5645077	616205	5645077	616205	5645077		2109	65	110
Transect	Leslie/LSmith	13/07/2004	573685	5683728	573643	5683737	43	573664	5683733	573689	5683775	573664	5683733		2120	60	190
Transect	Leslie/LSmith	13/07/2004	573734	5683808	573694	5683825		573714	5683817	573689	5683775	573714	5683817		2165		200
Transect	Leslie/LSmith	26/07/2004	516949	5752756	516834	5752612	184	516920	5752724	516834	5752591	516920	5752724	15	2067	60	60
Transect	Leslie/LSmith	26/07/2004	516828	5752568	516790	5752608	55	516809	5752588	516834	5752591	516809	5752588		2070		60
Transect	Leslie/I.Smith	27/07/2004	505368	5770771	505362	5770824		505365	5770798	505389	5770798	505365	5770798		2020	60	240
Transect	Leslie/I.Smith	27/07/2004	505428	5770779	505378	5770837	77	505403	5770808	505389	5770798	505403	5770808		2022		210
Transect	Leslie/I.Smith	29/07/2004	547784	5718364	547829	5718317	65	547807	5718341	547830	5718379	547807	5718341		1966	40	230
Transect	Leslie/I.Smith	29/07/2004	547864	5718392	547845	5718447	58	547855	5718420	547830	5718379	547855	5718420		2011		250
Transect	Leslie/LSmith	29/07/2004	536037	5725692	535968	5725697	69	536003	5725695	536018	5725672	536003	5725695		2116	60	180
Transect	Leslie/LSmith	23/08/2004	491049	5783335	490995	5783370	64	491022	5783353	490994	5783351	491022	5783353		2068	40	210
Transect	Leslie/LSmith	23/08/2004	491010	5783329	490937	5783364	81	490974	5783347	490994	5783351	490974	5783347		2065	65	210
Transect	Leslie/LSmith	25/08/2004	492166	5783091	492134	5783065		492150	5783078	492150	5783078	492150	5783078		2034	20	160
Transect																	210
Transect	1.Smith	06/08/2003	425047	5870943	425059	5870907	38	425053	5870925	425142	5870914	425053	5870925		2038	20	180

Ground Truth: Field Campaigns

Table 1	Criteria for determin	ing presence or absence	e score (SCORE)	
Score	Trees Distinguished within Kernel	Trees Distinguished within Plot	Result	Classification
0	Yes	Yes	No WBP in entire kernel	Absence
1	No	Yes	Unlikely to be WBP in kernel	Absence
2	Yes	No	If there are WBP in kernel, they're too small or their crowns are indistinguishable	Absence
3	Yes	No	Habitat in representative kernel is different from regions of confirmed absence and may contain WBP	Unconfirmed
4	No	No	The plot is likely absence, but not confirmed in surrounding kernel	Unconfirmed
5	No	No	Equal likelihood of presence or absence	Unconfirmed
6	No	No	The habitat observed indicates likely presence, but not confirmed	Unconfirmed
7	No	No	Habitat in kernel is similar to regions of confirmed presence but may not contain any WBP	Unconfirmed
8	Yes	Sort of	Confirmed WBP in plot but rare in kernel	Presence
9	No	Yes	Confirmed WBP in plot and most of kernel	Presence
10	Yes	Yes	WBP in entire kernel	Presence

Table 2. Crit	eria for determining representative score (REP SCORE)
Score	Certainty
0	Unusable Plot
1	Absence is obvious
2	Plot contains less than 25% homogeneity
3	Plot contains less than 50% homogeneity
4	Plot contains less than 75% homogeneity
5	Representative in plot, kernel contains less than 25% representative
6	Representative in plot, kernel contains around 50% representative
7	Representative in plot, kernel contains more than 75% representative
8	Representative for 100m
9	Representative for 300m
10	Representative for 500m

В	С	D	E	F	G	Н	- 1	J	K	L	М
LOCATION	N83Z11X	N83Z11Y	ELLIPTICAL HEIGHT	Dx	Dy	BEARINGC	SCORE	REP SCORE	HABITAT	DTS	PLOT DESCRIPTIO
Livingstone	669028	5500531	2351.504	-129	34	104.9					
Livingstone	669135	5500332	2351.504	-236	233	134.7	10	8	open climax	Pf	Pf, Se, Fa on open rocky
Livingstone	668899	5500565	2353.049	-129	32	104.0					
Livingstone	668770	5500597	2354.050	-130	31	103.5					
Livingstone	668640	5500628	2354.776	-129	30	103.2					

M	N	0	P	Q	R	S	T	U
PLOT DESCRIPTION	CANPCT	CANOPY	GRDVEGPCT	GROUNDCOVER	PLOTPHOTOLINK	Tree	Attitude (GE)	CH Distance
Pf, Se, Fa on open rocky slope	40	P(Fa	10	rocky	\Photos\Livingstone\W08\B_20368_Plot.tif	Pf	1496	50

Model: Table Mountain, Alberta

Developing the Model

1. Explanatory Variables

2. Choosing Model Type

3. Converting the Model to a Map

1. Spectral variables

Calculated from Landsat ETM

2. Topographic variables

Calculated from digital elevation

Landsat BAND	Wavelength	Use
BAND 1	Blue	Differentiates soil and rock from vegetation
BAND 2	Green	Covers green reflectance peak from leaves
BAND 3	Red	Senses chlorophyll absorption region
BAND 4	Near Infrared	Vegetation biomass and vigor; soil moisture
BAND 5	Mid Infrared	Vegetation moisture and soil moisture
BAND 6	Thermal	Vegetation stress
BAND 7	Mid Infrared	Vegetation moisture and rock type

Lillesand, Kiefer, and Chipman, 2004

1. Spectral variables

Calculated from Landsat ETM

2. Topographic variables

Calculated from digital elevation

1. Spectral variables

- Calculated from Landsat ETM
- Tasselled Cap

2. Topographic variables

- Calculated from digital elevation
- CTI D-Infinity

Logistic Regression

Classification Tree Analysis

Logistic Regression

Classification Tree Analysis

Discreet classes

Logistic Regression

Classification Tree Analysis

Continuous surface

Discreet classes

Logistic Regression

Classification Tree Analysis

Continuous surface

Discreet classes

Intuitive

Logistic Regression

Classification Tree Analysis

Continuous surface

Makes sense for binary

Discreet classes

Intuitive

Logistic Regression

Classification Tree Analysis

Continuous surface

Makes sense for binary

Discreet classes

Intuitive

Boosting

Logistic Regression

Classification Tree Analysis

Continuous surface

Makes sense for binary

Thresholding/Sensitivity Analysis (ROC)

Discreet classes

Intuitive

Boosting

Logistic Regression

Classification Tree Analysis

Continuous surface

Makes sense for binary

Thresholding/Sensitivity

Analysis (ROC)

Performs Good

Intuitive

Boosting

Logistic Regression

Classification Tree Analysis

Continuous surface

Makes sense for binary

Thresholding/Sensitivity

Analysis (ROC)

Performs Good

Discreet classes

Intuitive

Boosting

Performs Better

Model: Classification Tree

Rule 3/6: (182.7/10.3, lift 2.0)

```
      BAND4
      <= 78</td>

      NDVI
      > -0.132353

      LONGCONVEX
      <= 0.105444</td>

      CTIDINF
      <= 8.03757</td>

      ELEVATION
      > 1742
```

-> class Presence [0.939]

Model: Classification Tree

 Trial	3:	

Rule 3/1: (79.1, lift 1.9)

ELEVATION <= 1742

-> class Absence [0.988]

Rule 3/2: (28.4, lift 1.9)

BAND4 > 78

-> class Absence [0.967]

Rule 3/3: (52.7/3.2, lift 1.8)

CTIDINF > 8.03757

-> class Absence [0.924]

Rule 3/4: (37.2/2.7, lift 1.7)

NDVI <= -0.132353

LONGCONVEX <= 0.105444

-> class Absence [0.905]

Rule 3/5: (52/5.7, lift 1.7)

LONGCONVEX > 0.105444
PLANCONVEX > -0.764402
CTIDINF <= 8.03757

-> class Absence [0.877]

Rule 3/6: (182.7/10.3, lift 2.0)

BAND4 <= 78 NDVI > -0.132353

LONGCONVEX <= 0.105444

CTIDINF <= 8.03757 ELEVATION > 1742

-> class Presence [0.939]

Rule 3/7: (7.5, lift 1.9)

LONGCONVEX > 0.105444
PLANCONVEX <= -0.764402
ELEVATION > 1742

-> class Presence [0.895]

Default class: Absence

Model: Converting Model To Map

Improving The Model

1. More/different explanatory variables

• Topographic roughness, disturbance index

2. Modelling tactics

- Reduce variation stratify sample
- Utilize error values
- Group stands into objects

3. More data

4. Better data

Better Data

- Location, location, location
 - Especially with distance surveys!
- Consistency
- Need to save money, but clustered sampling is really bad for modelling
- Fixed wing surveys seem like cheap alternative, but can be problematic
- Helicopter surveys notoriously expensive, often yield poor results

Better Data

Aerial Platforms

In Testing

GWS Slow Stick Gaui 300X-S Quadricopter

Of Interest

Planes

Multiplex Easy Star rtf: http://www.multiplexusa.com/ready-to-fly/easy_star.html http://www.eflightwiki.com/eflightwiki/index.php?title=Multiplex_EasyStar

· Cost: ~\$200.

Quadricopters (also hexa- and octo-)

AscTec Falcon 8: http://www.asctec.de/asctec-falcon-2/

· Cost: >\$15K with full GPS flying capability.

AscTec Hummingbird:

http://www.asctec.de/asctec-hummingbird-autopilot-2/

· AutoPilotV2- Cost: >\$4.5K with full GPS flying capability. 200g payload

uttn://www.asctec.de/asctec-hummingbird-researchpilot-o/

· Research Pilot V1 - Cost: \$1.2K without GPS flying. 200g payload.

AscTec Pelican AutoPilotV2:

http://www.asctec.de/asctec-pelican-2

· AutoPilotV2- Cost: >\$6.7K with full GPS flying capability. 500g payload.

AscTec Funpilot: http://www.asctec.de/technics/

The Ecosynth Team Blog

Our team develops Ecosynth technology: inexpensive user-deployed systems for mapping ecology across landscapes in 3D using open-source computer vision software, commercial cameras and hobbyist aircraft.

Page List

About Ecosynth
Aerial Platforms
Cameras
Coding Corner
Ecosynth Related Resources
Ecosynth Variables
Hesakopter Master Page
History of Aircraft Cameras
Summer Flight Log
UMBC Herbert Run Tree Identification Page
What is Ecosynth?

Tag cloud

3D 3D software 3DR Radio aerial photos aircraft abitode AR.Drone AroGIS archaeology arducopter ardupilot Autonomous Brushless Controller Bundler calibration Camera Mount Camera Stabilization Calmera's CHDK citizen science color computer vision data collector DIY Drones drones DXy Spektrum Earth Watch EasyStar Ecosynth

Better Data

UAV:

Wookong-M Waypoint

Thanks!

